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Signed and Unsigned Binary Number Representation

So,  if  you  recall  in  the  previous  lectures,  we  talked  about  the  various  number  systems

decimal, binary, octal, hexadecimal. And we mention one thing that binary number system is

important from the point of view of circuit design, specifically digital circuit design. So, in

this lecture we shall try to first motivate you why that is so, and secondly we shall show you

or  tell  you  that  how  to  represent  arbitrary  numbers  in  binary  like.  So,  far  we  did  not

considered  negative  numbers  how  do  we  represent  negative  numbers,  we  assumed  all

numbers to be positive ok. So, we shall be talking about these specific things in the current

lecture. So, this lecture is titled Signed and Unsigned Binary Number Representation.
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So, let us first motivate ourselves why binary numbers are important, why do we use them.

So, I just mentioned that binary numbers are important from the point of view of your circuit

design, but why is it so ok. To answer this question you will have to understand how circuits

are designed and implemented, modern day circuits are invariably implemented using basic

building  blocks  like  transistors,  they  are  typically  MOS  transistors,  metal  oxide

semiconductor symbolically a transistor is represented like this.



G

Depending on what  we apply to  a  terminal  called  gate,  there  may be a  current  flowing

between the other 2 terminals or there may not be any current flowing. So, transistor acts like

a switch depending on my control input G. G can be regarded as a controlling input. So, it is

either conducting or non-conducting, there are 2 states. Now, in a modern day VLSI chip,

there are billions of such transistors; that means, there are billions of such switches very small

in size, they all turn on and turn off in synchronism depending on some external event or

applied input and, they realize some functionality that we wanted to realize ok.

So, as it said a switch can represent 2 states either conducting or non-conducting. Now, as an

analogy binary number system also has 2 states or digit 0 and 1. So, if I can represent the

conducting state as 1 and the non conducting state as 0, then I can say that a MOS transistor

the  state  of  a  MOS  transistor  represents  a  binary  digit.  It  is  either  conducting  or  non

conducting means it is either 1 or 0. So, there is a one to one correspondence.

Similarly, other conventions you can follow, this is what I just mention open switch is 0 close

switch is 1, or you can talk about voltages at some point if the voltage is low you can say it is

0,  if  the  voltage  is  high  you can  say it  represents  binary 1.  Then absence  of  current  or

presence of current like the example I took, or in some circuits nowadays we use light for the

purpose of computation.

So, if there is no light it can represent binary 0, if there is a light it can represent binary 1.

This is the basic principle behind photonic communication like, you know nowadays optical

fibers are used for long distance high speed communication the basic principle is like this,

you send light and you sense light at the other side whether the light is coming or not coming.

So, bits can be represented depending on the presence or absence of light ok. 
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So, in this course because we are talking about digital circuits, we shall be concentrating on

binary numbers. Now, let us introduce some definitions, a single binary digit which is 0 or 1

is termed as a bit as you also mentioned in the last lecture. Now, when you have a collection

of 4 bits that is called a nibble, collection of 8 bits is called a byte. Next higher thing we call

it as a word, but of course, the definition word is not well defined, depending on the context

16 bits, 32 bits or 64 bits can be considered as a word, but the definition of bit, nibble and

byte are well defined. It is 1 4 and 8 that many bits right. 
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Now let us talk about representing numbers in binary. So, the question that we are trying to

answer is that. Suppose we are representing a binary number in n number of bits, let us say n

equal to 16 or something let us say n equal to 16. 

Now, I want to ask a question that in 16 bits, how many distinct numbers can I represent. This

of course, I want to know like in 4 bits you had already seen earlier that when you are talked

about hexadecimal numbers, in 4 bits we can represents number from 0 up to 15, octal for 3

bits 0 up to 7. So, my question is for n bits in general, what will be the range of numbers how

many total numbers I can represent ok. So, it is a simple combination calculation at each bit

position there are 16 bit positions right. So, each bit positions can be either 0 or 1.

So, there are 2 combinations, second bit position again 0 or 1. So, you multiply 2 into 2 into 2

up to n times. So, you get 2 to the power n this is the total distinct numbers you can represent.

So, so you recall for hexadecimal n equal to 4 you had numbers in the range of 0 to 15.

n×¿=2n

2×2× …×2¿

So, how many numbers are possible 2 to the power 4, 2 to the power 4 means 16. So, total 16

numbers could be represented. So, here for n bits I can represent total of 2 to the power n

numbers ok. Now, next question is how to incorporate sign in a number numbers can be

unsigned, or there can also be a sign associated with the number. So, unsigned number will

only have a magnitude, but no sign, but signed number will be having a magnitude as well as

a sign, which will indicate that it is either positive or it is negative right ok.

Totalnumber canberepresented=2n , f ¿n=4,24
=16
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Let us first talk about unsigned binary numbers. Now, we just now saw that in n bits you can

have 2 to the power n distinct combinations. So, the minimum number that you can represent

is 0 all 0’s and maximum number is 2 to the power n minus 1 all 1. You think of hexadecimal

000 means 0 and 111 means 15. For octal if you take n equal to 3 the 8 distinct combinations

should be 000, 001 up to 111, if you count there are 8 combinations 000 means 0, 111 means

7 which is 2 to the power 3 minus 1, 2 to the n minus 1 ok.

Minimumnumber=00…0(nzeros)=0

Maximum number=11 …1 (nones )=2n
−1

This table shows that as the value of n increases. So, how much is the range of the numbers

change for 8 bits, it will go up to 2 to the power 8 minus 1 means 256 minus 1, which means

255, for 16 bits this is 65 535 for 32 bits it will be about 4 billion. So, you can say numbers

up to 10 digits can be represent, but in 64 it will be even larger. So, if you just calculate this it

will be approximately about 21 digits. So, large number so, as the number of bits increases

the range of the number increases very rapidly ok. So, as this table shows, this you have to

remember.

Forn=8, therange is0¿28
−1, i .e .0¿255

Forn=16,the range is0¿216
−1, i . e .0¿65,536
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Now, this already we have to talked about earlier, this I am showing it in a, you can say in a

mathematical form. Let us say I have an n bit binary number, where the digits are represented

as this is an integer number no fractions point b0 b1 b2 up to bn minus 1. b0 is the least

significant bit position and bn minus 1 is the most significant bit position.

An nbit binary number=bn−1bn−2…b2b1 b0

So, the weights will be 2 to the power 0 ( 20 ), 2 to the power 1 ( 21 ), 2 to the power 2 (

22 ) and so, on. So, when you try to calculate the decimal equivalent, you multiply the

digits by the corresponding weights and add them up, like b0 you multiply by 2 to the power

0 ( 20 ), b1 by 2 to the power 1 ( 21 ), and so on bn minus 1 by 2 to the power n minus 1 (

2n−1 ). So, in binary we have seen that each digit position has a weight, which is some

power of 2, this way you can calculate the decimal equivalent ok.

Thedecimal equivalent=bn−1 ×2n−1
+…+b2×22

+b1×21
+b0×20
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Just an example for n equal to  4 for 4 digit  just  like hexadecimal so,  if  you express all

possible combinations in binary and try to convert them to decimal, you will see that the

range of numbers you can represent will start with plus 0, it will go up to plus 15. These are

considered to be unsigned number; that means, positive no sign ok. This already we have

seen for hexadecimal numbers. Same thing is there.

(Refer Slide Time: 11:45)

Now let us come to the issue of sign. So, in a most of our calculations we have to deal with

both positive and negative integers. So, now, the question is how do you represent negative



numbers in a system or in a circuit and how do we manipulate on them ok. So, the answer to

this question how to represent sign there are 3 broad approaches which are used in practice,

these are called sign magnitude one’s complement and two’s complement representations.

Now, we shall be explaining these three representations one by one. These are all used to

represent signed numbers, numbers which are both positive and negative. 

(Refer Slide Time: 12:38)

Let  us  look  at  the  simplest  first  the  sign  magnitude  representation.  You  see  this  sign

magnitude representation conceptually looks like this. Suppose I have an n bit representation

this whole thing is n bits. So, I reserve 1 bit for this sign, this is my sign the remaining n

minus 1 bits will represent magnitude. 

So, as a matter of convention we can follow this in this sign, 0 means the number is positive,

1 means the number is negative. So, the most significant bit or MSB, in short it is called it

represents the sign, which can be 0 or 1. 0 is positive, 1 is negative. And the remaining n

minus 1 bits will represent the magnitude. And already we know that in n minus 1 we can

represent a number in the range 0 up to 2 to the power n minus 1 minus 1 ( 2n−1
−1 ). So,

the magnitude can be in this range. 

Forn−1bit , the rangeis 0¿(2n−1
−1)

So, in this representation the range of numbers can be, sign will indicate whether its positive

or  negative,  but  the  maximum magnitude  can  be  2  to  the  power  n  minus  1  minus  1  (



2n−1
−1 ). So, this smallest number will be this, the largest number will be this right. This

follows directly from the binary representation. 
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But this one issue here, you can see that in this representation 0 is represented by 2 different

bit patterns because, for the number 0 the magnitude obviously will be 0. So, this will be all

0’s, but this sign can be either 0 or 1, it does not matter because 1 will indicate plus 0, other

will indicate minus 0. But technically speaking both are 0’s right plus 0 or minus 0.

So, one drawback of this representation is that 1 bit pattern we are wasting, we are using up

two different bit patterns to represent the same number 0 ok. This is one small drawback in

this representation.
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So, this table shows you the sign magnitude representation in 4 bits, if it is 4 bits you see the

first  column represents the MSB most significant  bit  is  0,  which means the numbers are

positive. And the last 3 bits indicate magnitude 000 is 0, 011 is 3. So, on 110 is 6, 111 is 7 and

second  column indicates,  where  the  most  significant  bit  is  1,  1  indicates  the  number  is

negative. But the magnitude is again ranging from 0 to 7. So, you see that you can represent a

total  of  15  distinct  numbers  because,  plus  0  and  minus  0  are  having  2  different

representations and on one side I can represent plus 1 to plus 7, on the other side minus 1 to

minus 7. So, 14 plus 1, 15 total numbers I can represent ok. 
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Let us come to 1’s complement representation. So, what is 1’s complement representation, in

this method if the number is positive, then it is represented exactly like in sign magnitude

form no difference. The first bit indicates sign which is 0 and the remaining part represents

magnitude,  but  negative  numbers  are  represented  in  a  different  way that  we should  see.

Suppose  I  have  a  number  minus  5  so,  I  do  something  called  1’s complement  of  5,  1’s

complement of 5.

So, it is explained what is 1’s complement. So, once I do ones complement of 5, this is my

representation for minus 5. So, when I have a negative number I take the magnitude 5, I

compute something called 1’s complement of 5 and that will give me my representation of

minus 5. So, what is ones complement it is very simple, you take the number let us say we

have 5, let us say in 4 bits 5 is what 0101 this is 5 right, in 4 bits. You compliment every bit

of a number. That means, 1 you make, 0 you make 1, 1 you make 0, 0 you make 1, 1 you

make 0. You change or flip every number and this will be your 1’s complement. This 1010

will indicate minus 5 right.

4 bit representation ,+5=0101

1' scomplement of +5=1010=−5

Now, you see here again the most significant bit will indicate sign because, when you do this

the plus 5 was having the most significant bit as 0, but as you flip it has become 1. So, for



negative numbers the MSB will  automatically be still  1.  So,  just  by looking at  the most

significant  bit,  you  can  tell  whether  the  number  is  positive,  or  whether  the  number  was

negative ok.
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So,  this  table  shows  you  the  representations  in  1’s  complement  form.  For  the  positive

numbers as I said they are same as the sign magnitude form 0 1 2 3 4 5 6 7, but for negative

numbers it is a little different. Well here, I worked out one. Let us say I want to represent

minus 4, I want to represent minus 4. So, how do I do it. I first take plus 4, what is plus 4,

plus 4 is my 0100, I take 0100, then I take 1’s complement of 0100. I flip the bits 0 becomes

1, 1 becomes 0, they become 1 and 1. So, it is 1011, this way you can take something, let us

take minus 2, 2 means 0010.

+4=0100, 1' scomplement of +4=1011=−4

+2=0010, 1' scomplement of +2=1101=−2

So, therefore, minus 2 will be take 1’s complement 1101, you see minus 2 is 1101. So, in this

way, we can calculate for everyone. So, here again you will see that there will be 2 distinct

representations coming from 0, plus 0 will be having representation 0000, minus 0 will be

having representation 111, because you take plus 0 make negative 1111, both represents 0.

So, here again 1 of the combination is wasted just like sign magnitude.



+0=0000,1' scomplement of +0=1111=−0
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So, it  is mentioned here the range of numbers that can represented here is  just  like sign

magnitude  form,  maximum is  plus  2 to  the power  n minus 1 minus 1 [
2

(¿¿n−1−1)
+¿

,

minimum is minus 2 to the power n minus 1 minus 1 [
2

(¿¿n−1−1)
−¿

. Because, we look in

the previous one, in the positive side it was plus 7, negative side also it was minus 7 ok. So,

plus  for  n  equal  to  4 it  becomes 2 to  the power 3 minus 1 7,  minus 7.  And also this  I

mentioned that there will be 2 different representations of 0.

Maximum number=+(2n−1
−1 )

Minimumnumber=−(2n−1
−1)

But one big advantages that this of course, we shall not be discussing now we will discussing

later,  that  one  big  advantage  of  1’s  complement  representation  is  that,  when  you  do

subtraction  you  do  not  need  to  separately  subtract  numbers  because,  you  can  subtract



numbers using addition only. So, what does it mean, well in a computer system we have both

addition circuits, we are both subtraction circuits. Now, we are saying that if we represent our

numbers in 1’s complement form, we do not need subtractor circuits. We can have only the

adder  circuit  using adder, we can do addition,  you can also do subtraction,  this  is  a  big

advantage. So, we shall see later how this is, how this is done or how this is achieved ok. 
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Now, let us move on to the third representation 2’s complement which in fact is an extension

of 1’s complement and in fact, this is the most widely used representation today. So, here

again the positive numbers are represented as in sign magnitude form, for negative numbers

you represent them in something called 2’s compliment form. 

Now, what is 2’s complement form, the definition is simple well earlier we had seen what is

meant by 1’s complement, just flip all the bits you do 1’s complement, then you add 1 to the

number. This is defined as 2’s complement right. Complement every bit of the number and

then add 1 to the resulting number. So, here again the most significant bit will indicate the

sign 0 for positive, 1 for negative.

2' complement of abinary number , X=1' s complement of X+1
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Let us see how the representation works. So, again an example for n equal to 4 so, for the

positive numbers it is same as sign magnitude or 1’s complement form no difference. But for

negative number there is a difference. Let us again take the example for minus 4, plus 4 is

0100.

So,  when  you  want  to  represent  minus  4  like  here  we  first  we  have  to  take  the  2’s

complement of plus 4, plus 4 is this. 0100 was plus 4, you first take the ones complement 1’s

complement means you flip the bits 1011; 1011 means what in decimal 8 plus 2 plus 1 13, 8

plus 2 plus 1 11. You add 1 to it. So, we shall be taking about rules of addition later, if you

add 1 to it will become 12, 12 is 1100. So, 1100 will be the representation of minus 4. 

Signed representationof +4=0100

1' scomplement of +4=1011

2' scomplement of +4=1011+1=1100=−4

Now, another advantage here is that, well if you just look at the issue of 0, earlier we had the

issue of 0, that 2 representations ok.
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Let us try to compute minus 0, what is minus 0, you take plus 0, you take the 1’s complement

add 1 to it. If you want to add 1 to it you will see that in 4 bits the result will again become all

0’s, which means minus 0 will also be having the same representation.

Signed representationof +0=0000

1' scomplement of +0=1111

2' scomplement of +4=1111+1=0000=−0

So, there will be no 2 separate representations of 0, but what will this extra combination

indicate, here I can add one additional number minus 8, this combination 1000 will indicate

minus 8. This we shall see later also how this is coming, but in 2’s complement this is one

advantage. On the negative side, I can represent one extra number, on the positive side 0 to 7,

in the negative side minus 1 to minus 8. 

Maximum number=+(2n−1
−1 )

Minimumnumber=−2n−1
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So, the first difference is that the range of number is increasing by 1 on the minimum site we

can represent 1 extra number. And this is because we have a unique representation of 0 and,

just like ones complement, we can here also we can do subtraction by addition and, as I had

said almost all computers today use 2’s complement representation. 

So, when we talk about representing negative numbers  today. So, invariably we shall  be

talking about 2’s complement representation ok.
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Let us talk about a few other features of 2’s complement representation, well this may not be

very obvious, but when you are calculating the value of a 2’s complement number this can

help. Suppose I have a n bit number I have a n bit number representation, in 2’s complement.

Let us let us say in 4 bit I take two examples, let us say 0101 and let us say 1101. I want to

find out its value. So, a simple rule is each bit position will be having weights, you add them

up most significant bit will also be having a weight, but negative.

So, when I talk about 0101, 0 multiplied by anything is 0. So, the value will be 0 plus 4 plus

this again 0 plus 1 which is 5. 2 to the power 0 
2

(¿¿0)
¿

, 2 to the power 1 
2

(¿¿1)
¿

, 2 to

power 2 
2

(¿¿2)
¿

, 2 to the power 3 
2

(¿¿3)
¿

. But here because the most significant bit is 1 it

will be minus 8 plus 4, 0 is 0 plus 1 so, this comes to minus 3. So, you can check minus 3,

you take plus 3, plus 3 is 0011, take the 1’s complement, add 1 it becomes 1101, the same

1101. So, this is a very quick way of finding out the value of a 2’s complement number, you

again follow that weighted some principle, only for MSB the weight is negative this is the

only difference ok. 

0101=0+4+0+1=5

1101=−8+4+0+1=−3
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The other interesting thing is that when you have 2’s complement representation. So, if you

shift left a number by k positions, this is equivalent to multiply the number by 2 to the power

k. Let us take some example, let us say in 8 bit representation I am showing plus 19, this is 1

2 4 8 and 16 so, 16 plus 2 plus 1 is 19. So, if I shift left the number by 2; that means, 10011 is

getting shifted and 2 0’s are inserted on the right. So, if you evaluate this number again 1, 2,

4, 8, 16, 32, 64, so 64 plus 8 plus 4 become 76. So, 19 multiplied by 4 is 76, 2 to the power 2.

+19=00010011

¿by2bits=01001100

¿64+8+4

¿+76

¿(+19)×4

So, even take the case of negative numbers, minus 29 is this you can check this, these minus

29 shift left by 2 shift left again 2 0’s are inserted, it is minus 116 minus 29 multiplied by 4 is

minus 116. So, shift left by every position is equivalent to multiplying a number by 2, if you

shift left twice multiply by 2 square. 

−29=11100011



¿by2bits=10001100

¿−128+8+4

¿−11 6

¿(−29)×4
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Similarly, if we shift right it means dividing by 2, if you shift right by k position it means

dividing by 2 to the power k. So, again I give an example, there is a number this represents

plus 22, this you can check. If you shift right by 2, 0’s will be inserted on the left so this

becomes 5 so, 22 divide by 4 is 5 point something, if you ignore the decimal part, it is 5. But

only one thing if the number is negative and when you shift right, you shift the sign bit. Do

not shift 0’s, you pad it with this sign bit. Because, the number was negative, let the number

remain negative.

+22=00010110

¿ shift by2bits=00000101

¿4+1

¿5(ignore the fractional part)



¿(22)÷ 4

So, it was minus 28 shift by 2, this number becomes minus 7, this you can check. So, again

we are dividing by 4. So, shift right means division, shift left means multiplication by some

power of 2 and one last trick let me tell you that just as this example shows when some sort

of so, you replicate or copy the sign bit as many times as you want without changing the

value of the number, this is called sign extension, like you consider an 8 bit number let say

plus 47 in 8 bits, this is plus 47 you can verify 1, 2, 4, 8, 16, 32, 32 plus 8 plus 4 plus 2 plus

1. Now, suppose I want to represent this number in 32 bits. So, I have this representation and

I add 24 0’s in the beginning, this is called sign extension. 

−28=11100100

¿shift by2bits=11111001( pad with signbit )

¿−128+64+32+16+8+1

¿−7

¿(−28)÷4

So, you can check this number will also represent plus 47, the same thing holds for a negative

number also. The only rule is that you are replicating the sign bit not adding 0 like here, the

sign bit was 1, this is the representation of minus 93 this also you can check. So, you can

replicate this sign bits, so many times, your number will remain still minus 93. So, when you

change the size of a number you can freely replicate the sign bit and add it in the beginning as

many times you want, this is a big advantage of 2’s complement representation ok.

So, with this we come to the end of this lecture. So, we shall continue with our discussion in

the next lecture again.

Thank you.


